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(a) SISD Uniprocessor Architecture

Captions:

CU - Control Unit
MU — Memory Unit
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PU - Processing Unit

IS — Instruction Stream
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(b) SIMD Architecture (with Distributed Memory)

Capftions:

CU - Control Unit
MU - Memory Unit
DS - Date Stream
LM — Local Memory
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(c) MIMD Architecture (with Shared Memorv)

Captions:

CU - Control Unit : PU - Processing Unit
MU - Memory Unit : IS - Instruction Stream
DS - Date Stream : PLE — Processing Element

LM — Local Memory
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(d) MISD Architecture (the Systolic Array)
Captions:
CU - Control Unit
MU - Memory Unit

DS - Date Stream

LM — Local Memory
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PU - Processing Unit
IS - Instruction Stream

PE — Processing Element



Two Approaches to Parallel Programming

a) Implicit Parallelism

Source code written in sequential languages (C. Fortran. Lisp or Pascal)

l

Parallelizing Compiler produces Parallel Object Code

b) Explicit Parallelism

Source code written in concurrent dialects of C. Fortran. Lisp or Pascal

F

Concurreny preserving compiler produces concurrent Object Code




Two Categories of Parallel Computers

1. Shared Memory Multiprocessors (tightly
coupled systems

2. Message Passing Multicomputers
SHARED MEMORY MULTIPROCESSOR MODELS:
a. Uniform Memory Access (UMA)

b. Non-Uniform Memory Access (NUMA)

c. Cache-Only Memory Architecture (COMA)
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The UMA multiprocessor model (e.g.. the Sequent Symmetry S-81)
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(a) Shared local Memories (e.g.. the BBN Buttertly)
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NUMA Models for Multiprocessor Svstems
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(b) A hierarchical cluster model (e.g.. the Cedar system at the University of Illinois)

NUMA Models for Multiprocessor Systemns

P: Processor, CSM: Cluster Shared Memory, GSM: Global Shared Memory
CIN: Cluster Interconnection Network



Interconnection Network
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P : Processor
C : Cache
D : Directory

The COMA Model of a multiprocessor (e.g.. the KSR-1)



Generic Model of a message-passing multicomputer
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Important 1ssues: Message Routing Scheme. Network flow control strategies. dead
lock avoidance. virtual channels. message-passing primitives, prograiml
decomposition techniques.



Scalar Processor The Architecture of a Vector
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STATIC Connection Networks
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The Channel width of Fat Tree increases as we
ascend from leaves to root. This concept 1s used in

Binarv Tree CMS5 connection Machine.
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Introduction

* Linear Pipeline Processors

A linear pipeline Processor is a cascade of
processing stages which are linearly connected
to perform a fixed function over a stream of
data flowing from one end to the other.

Linear pipelines are applied for instruction
execution, arithmetic computation, and memory
access operations.



Asynchronous Pipeline

 Data flow between adjacent stages in an
asynchronous pipeline is controlled by a
handshaking protocol.

 When stage Si is ready to transmit, it sends a
ready signal to stage Si+1. After Si+1 receives the
incoming data, it returns as acknowledge signal
to Si.

* Asynchronous pipelines are useful in designing
communication channels in messagepassing
multicomputers.



Asynchronous Pipeline

Input |::> _:) ) > Output
Ready Ready
Ready S, S, S Ready
ACK ACK
ACK ACK

Total time required
T=[K+(n-1)]t



Synchronous Pipeline

* Clocked latches are used to interface between
stages. The latches are made with master-
slave flip-flop, which can isolate inputs from
outputs. Upon the arrival of a clock pulse, all
latches transfer data to the next stage
simultaneously.

* The pipeline stages are combinational logic
circuits. It is desired to have approximately
equal delays in all stages.



Synchronous Pipeline

* These delays determine the clock period and
thus the speed of the pipeline.

Input Output

|:>L S; :>L S, ﬂL S¢ :>

Clock




Four stage pipeline

1 2 3 4
S, X
S, X
S, X
S, X
S, = stage | T, = Maximum stage delay
L = Latch d = Latch delay

T = Clock period ACK = Acknowledge signal




Nonlinear Pipeline Processors

* A dynamic pipeline can be reconfigured to
perform variable functions at different times.

 Multiple reservation tables can be generated for
the evaluation of different functions.

* Each reservation table displays the time-space
flow of data through the pipeline for one function
evaluation. There is a many-to-many mapping
between various pipeline configurations and
different reservation tables.



Nonlinear Pipeline Processors

Output X

Input /T

Sl Sz 53 > Output Y
— > | |

A three stage pipeline

Latency and: is the number of time units (clock cycles) between two initiations of a pipeline

Must be Collision free Scheduling
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Pipeline Performance measures

» In the following analysis, we provide three
performance measures for the goodness of a pipeline.
These are the Speed-up S(n), Throughput U(n), and
Efficiency E(n). It should be noted that in this analysis
we assume that the unit time T =t units.




1. Speed-up S(n)

» Consider the execution of m tasks (instructions) using
n-stages (units) pipeline. As can be seen,n + m - 1 time

units are required to complete m tasks.
Time using sequential processing

» Speed —up S(n) =
o omXxXnxt

 (n+m-1)xt
mxn

Time using pipeline processing

n+m -1
» lim S(n) =n

m—00




2. Throughput U(n)

» Theoughput U(n) =

no.of tasks executed per unit time = -

(n+m —-1) Xt

» lim U(n) = 1 assuming that t = 1 unit time

m-—00




3. Efficiency E(n)

» Ef ficiency E(n) = Ratio of the actual speed —

. Speed—
up to the maximum speed — up = peen P =
m
n+m —1
» lim E(n) =1

m—-00




Pipeline “Stall” Due to Instruction
Dependency

» Instruction dependency refers to the case whereby
fetching of an instruction depends on the results of
executing a previous instruction. Instruction
dependency manifests itself in the execution of a
conditional branch instruction. the next instruction to
fetch will not be known until the result of executing
Instruction Is known.

» Example 1 (PDF page 205)




Pipeline “Stall” Due to Data
Dependency

» Data dependency in a pipeline occurs when a source
operand of instruction I, depends on the results of
executing a preceding instruction, I;, 1 > J. It should be
noted that although instruction I; can be fetched, its
operand(s) may not be available until the results of
Instruction [; are stored.

» Example 2 (PDF page 206)
» Example 3(PDF page 208)




Methods Used to Prevent Fetching the Wrong
Instruction or Operand

» Use of NOP (No Operation) This method can be used
In order to prevent the fetching of the wrong
Instruction, in case of instruction dependency, or
fetching the wrong operand, in case of data
dependency.

» Example 4 (PDF page 210)




Methods Used to Reduce Pipeline Stall

» Swap Instructions

» One important condition that must be satisfied to
produce correct results is that the set of instructions that
are swapped with the branch instruction hold no data
and/or instruction dependency relationship among
them.
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